Towards quantum supremacy

 Quantum phenomena do not occur in a Hilbert space. They occur in a laboratory.

Asher Peres

Being a theorist, it is easy to forget that physics is an empirical science.  This is especially true for those of us working on quantum information. Quantum theory has been so thoroughly tested, that we have gotten into the habit of assuming our theoretical predictions must correspond to physical reality. If an experiment deviates from the theory, we look for technical flaws (and usually find them) before seeking an explanation outside the standard theory. Luckily, we have experimentalists who insist on testing our prediction.

Quantum computers are an extreme prediction of quantum theory. Those of us who expect to see working quantum computers at some point in the future, expect the theory to hold for fairly large systems undergoing complex dynamics.  This is a reasonable expectation but it is not trivial.  Our only way to convince ourselves that quantum theory holds at fairly large scales, is through experiment. Conversely, the most reasonable way to convince ourselves that the theory breaks down at some scale, is through experiment. Either way, the consequences are immense,  either we build quantum computers or we make the most significant scientific discovery in decades.

Unfortunately, building quantum computers is very difficult.

There are many different routes towards  quantum computers.  The long and difficult roads, are those gearing towards universal quantum computers, i.e those that are at least as powerful as any other quantum  computer. The (hopefully) shorter and less difficult roads are those aimed at specialized (or semi or sub-universal) quantum computers. These should outperform classical computers for some specialized tasks and allow a demonstration of quantum supremacy; empirical evidence that quantum mechanics does not break down at a fairly high level of complexity.

One of the difficulties in building quantum computers is optimizing the control sequences. In many cases we end up dealing with catch-22. In order to optimize the sequence we need to simulate the system; in order to simulate the system we need a quantum computer; in order to build a quantum computer we need to optimize the control sequence…..

Recently Jun Li and collaborators found a loophole. The optimization algorithm requires a simulation of the quantum system under the imperfect pulses. This type of simulation can be done efficiently on the same quantum processor. We can generate the imperfect pulse `perfectly’, on our processor and it can obviously simulate itself.   In-fact, the task of optimizing pulses seems like a perfect candidate for demonstrating quantum supremacy.

I was lucky to be in the right place at the right time and be part of the group that implemented this idea on a 12-qubit processor. We showed that at the 12-qubit level, this method can outperform a fairly standard computer. It is not a demonstration of quantum supremacy yet, but it seems like a promising road towards this task. It is also a promising way to optimize control pulses.

As a theorist, I cannot see a good reason why quantum computers will not be a reality, but it is always nice to know that physical reality matches my expectations at least at the 12-qubit level.

P.S – A similar paper appeared on arXiv a few days after ours.

  1. Towards quantum supremacy: enhancing quantum control by bootstrapping a quantum processor – arXiv:1701.01198
  2. In situ upgrade of quantum simulators to universal computers – arXiv:1701.01723
  3. Realization of a Quantum Simulator Based Oracle Machine for Solving Quantum Optimal Control Problem – arXiv:1608.00677

Some updates

These last four and a half months have been exciting in may ways. Three papers submitted to arXiv: The first on Entanglement in DQC1, the second, a Leggett Garg experiment in liquid state NMR; and the third, a book chapter titled Why should we care about quantum discord? I also had two papers published one on quantum money and the second on  sequential measurements.

In August I organized a workshop on Semi-quantum computing and recently wrote about it on the IQC blog.  I also attended a workshop on Entanglement and quantumnes  in Montréal.

Earlier this month I got sucked into a discussion about publishing.

 

Photons in curved space-time

Photons in curved space-time

The IQC blog “Our quantum world” is finally open. The first blog post is about possible experiments that can detect the effect of Earth’s gravity on photons, check it out.

You can also check out my papers with Daniel Terno and other collaborators on the subject.

Polarization rotation, reference frames, and Mach’s principle

Photon polarization and geometric phase in general relativity

Post-Newtonian gravitational effects in optical interferometry

Weak measurements and post selection in NMR.

Last summer  I started thinking about my master’s thesis on weak measurements. I’ve been keeping an eye out  for interesting weak measurement papers for a while and have had the opportunity to referee a few  papers on the subject that forced me to keep up to date.     I started playing around with some weak measurement ideas  when Raymond Laflamme (one of my current supervisors)  suggested I  give a short introduction at the next group meeting. The biggest question at the end of this short introduction was “can we do this in (liquid state)  NMR?”. My first response was an outright `NO’, because any interesting weak measurement experiment would require post-selection (see below), a very difficult task in an ensemble system like NMR.  After some serious thought I realized that the solution was actually very simple.  What I found amazing was that the experimentalists  were able to perform the experiment immediately, in-fact these guys can perform any small quantum circuit without too much trouble. The result was the first weak measurement experiment that did not involve any optics. The paper was published in NJP (open access) and a video-abstract is available on the NJP website and youtube.

This month I also taught a short four lecture module on weak measurements and the two state vector formalism as part of QIC 890. But I will keep the discussion of weak measurements to another post. For now I will explain the trick used in the NMR experiment. That will require me to first explain some issues regarding ensemble quantum computers.

 Ensemble quantum computing

Today we don’t know what a quantum computer will look like. We don’t know what it will be made of and we don’t know how it will work. While from a computer science perspective all architectures are the same, that is they can solve the same problems, from a practical perspective they are quite different.  Nevertheless in most cases we like to think of an abstract quantum processor in a similar way to a standard processor, in terms of circuits.

The circuit accepts a classical input, a series of zeros and ones, encoded in quantum bits. The circuit itself is a sequence of operations on those quantum bits. These operations are reversible (unitary) but otherwise they can be quite general. At the end, some of the quantum bits are measured in a specific way and a classical output (a series of zeros and ones) is produced. This output is usually not deterministic so the program can produce different outputs for the same input. Although this seems like a flaw it is not, as long as the probability for an unwanted result is low.

In liquid state NMR the quantum bits are the nuclear spin degree of freedom of single atoms on a molecule. The molecule is the processor and the natural electromagnetic interactions inside the molecules are supplemented with controlled external fields to produce the dynamics (i.e the gates).   Control in this system is very good but there are a number of downsides. The main downside is that the signal is very noisy. To overcome the issue of noise a large number of molecules are used. This means that a large number of identical processors are running in parallel.

One of the drawbacks of running the computation on an ensemble of identical processors is in the readout stage.  The final measurement is an ensemble measurement and the result is a statistical average.  Why is this bad? Let us say for example that we are running a classical computation on two bits with two possible results. Half the time the result is 0,0 and half the time it is 1,1. Now if we read the average on each bit we get that each bit is 1 half the time and 0 half the time so on average it is 1/2. But this average result 1/2,1/2 is also consistent with an output which is 0,1 half the time and 1,0 half the time.  So we can’t distinguish between these results.

Liquid state NMR is not the only system where this kind of ensemble paradigm applies and it is quite possible that ensemble quantum processors will be the way to go for quantum computing, at least in the short term. Liquid state NMR is also the current record system, with good control of 12 qubits.  It is therefore not a surprise that people have come up with methods for circumventing the shortcomings of ensemble readouts.  Going back to the example above it is possible to have a third bit register set to   1 if the first two are equal and 0 if they are not. This will distinguish between the first and second scenario above. In the first case we will have 0,0,1 half the time and 1,1,1 the other half while in the second case we will have 1,0,0 half the time and 0,1,0 the other half.

Post selection and weak measurements.

In the case of post selection we want to read the average result of the first (quantum) bit but only in the case where the second one is in a specific state (say 0).  So if we have 0,1 one third of the time 0,0 one third and 1,0 one third we should to read out 1/2, the average of the first bit only in the two cases where the second was 0.  A similar situation exists when we want to get an interesting result for a weak measurement. The reading on the measuring device  must be post-selected according to the  state of the measured system.

To perform the post-selection we used a (seemingly) non reversible operation. Sticking to the example of classical bits above our algorithm worked in the following way.  We want to post select on the cases where the second bit is 0. To achieve this we perform an operation that randomizes the first bit if the second bit is 1. When we get the averages at the end we know how many times we got a random result (by measuring the second bit) and how many times we got a `real` result.  Using this information we can get the statistical average of the post-selected states.

The quantum case is a little  more involved but the basic idea is the same.  This trick allowed us to perform the weak measurement experiment with post selection and get strange results such as complex values and values in outside the normal range. The method we used for post-selection goes beyond weak measurements. We are currently thinking about other weak measurement experiments as well as other experiments that involve post-selection. The advantage is that we can control bigger systems than anyone else (by we I mean the experimentalists, I can’t control anything).

This was also my first collaboration with experimentalists. I’m looking forward to more.

Experimental realization of post-selected weak measurements on an NMR quantum processor,

Dawei Lu, Aharon Brodutch, Jun Li, Hang Li, Raymond Laflamme,  NJP 2014.